Monumental effort to save the threatened Viking treasures of Oseberg
12/6/12 .- http://www.heritagedaily.com
Norwegian conservators are conducting tests at HZB to halt the degradation of one of the most important cultural assets from the Viking Age.
Researchers from the Museum of Cultural History in Oslo, working closely with Helmholtz-Zentrum Berlin (HZB), have been studying ancient wooden Viking artefacts at the synchrotron radiation source BESSY II. The conservators expect this nondestructive method will yield crucial insights into the degradation of these unique works of art. The wooden artefacts come from a Viking grave found in 1904 at Oseberg near the Oslo fjords.
The Oseberg finding is considered one of the most important testimonies of the Viking Age and is one of the most frequently visited sights in Norway. Yet, they are now in serious danger of collapse because the wood fibres in the artefacts are disintegrating.
he reason is the preservation method widely used a hundred years ago in Scandinavia, by which the artefacts were treated. Now, chemists and conservators of the project Saving Oseberg, which is receiving international support, are trying to save these national treasures of Norway.
By performing tests at the synchrotron radiation source BESSY II at HZB, the conservators from Oslo have examined the condition of the wood to figure out what strategies will work to preserve them in future.
“In order to halt the degradation process of the cultural treasures, we have to analyze the chemical processes the preservative has caused in the wood very precisely,” says Dr. Hartmut Kutzke who, as chemist at the Museum of Cultural History in Oslo, is leading the conservation project.
The Norwegian scientists used the infrared beamline IRIS for their studies. Employing very high resolution infrared spectroscopy, the researchers have discerned what chemical changes the material has undergone as well as the composition of the overlapping layers of lacquer that have been applied over its hundred-year history of restoration. “The method works completely non-destructively.
With the brilliant synchrotron radiation from BESSY II, we can study with pinpoint accuracy the tiniest samples hardly visible to the eye,” Dr. Ulrich Schade of Helmholtz-Zentrum Berlin describes
the advantages of the infrared method.
Alongside the near-complete Viking ship, the burial ground discovered at the Oseberg farm on the Oslofjord contained numerous works of art. This finding from the 9th century counts among the most important testimonies of the Viking Age. At the time of their excavation, some of the the objects were heavily fragmented. At the beginning of the 20th century, restorers preserved the individual pieces of wood, including four ceremonial sleds and one wagon, using a solution of alum (potassium aluminium sulfate). The alum crystallized in the wood, thereby stabilizing the wood structure. Following this treatment, the fragments were assembled using metal pins and screws and finally given a coat of
lacquer.
Over the last twenty years, the researchers have seen these valuable wooden Viking artefacts become increasingly brittle. Tests have revealed that the treated wood is exhibiting strongly acidic reactions. The alum, originally used to strengthen the wood, has led to the complete destruction of the cellulose fibres – a main structural component of the wood. “Some of the Viking treasures of Oseberg are in very bad condition. Some are only held together by the outermost layers of lacquer,”
Hartmut Kutzke explains…..
The researchers have now done infrared studies to see whether the alum has also changed the composition of another important component of the wood – its lignin. Even the metal pins and nails used to hold the wooden pieces together may have triggered catalytic processes in the valuable artefacts and caused unknown interactions with the alum and other materials used in their preservation. Initial results confirm so far that there is no cellulose left in the affected Oseberg artefacts and that the lignin has been strongly modified. At the microscale, the researchers have detected significant differences from other archaeological wood not treated with alum.
Working from these results, the conservators intend to develop new preservation materials for archaeological wood so that they can preserve the Oseberg Viking treasures once again – this time for good. “Our aim is to develop an artificial wood. This could be a type of lignin that will form a new wood structure inside,” project leader Kutzke says. These novel materials could then be employed for preserving wooden cultural treasures all around the world.
Background:
The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) operates and develops large scale facilities for research with photons (synchrotron beams) and neutrons. The experimental facilities, some of which are unique, are used annually by more than 2,500 guest researchers from universities and other research organisations worldwide. Above all, HZB is known for the unique sample environments that can be created (high magnetic fields, low temperatures). HZB conducts materials research on themes that especially benefit from and are suited to large scale facilities. Research topics include magnetic materials and functional materials. In the research focus area of solar energy, the development of thin film solar cells is a priority, whilst chemical fuels from sunlight are also a vital research theme. HZB has approx.1,100 employees of whom some 800 work on the Lise-Meitner Campus in Wannsee and
300 on the Wilhelm-Conrad-Röntgen Campus in Adlershof.
HZB is a member of the Helmholtz Association of German Research Centres, the largest scientific organisation in Germany.
Researchers from the Museum of Cultural History in Oslo, working closely with Helmholtz-Zentrum Berlin (HZB), have been studying ancient wooden Viking artefacts at the synchrotron radiation source BESSY II. The conservators expect this nondestructive method will yield crucial insights into the degradation of these unique works of art. The wooden artefacts come from a Viking grave found in 1904 at Oseberg near the Oslo fjords.
The Oseberg finding is considered one of the most important testimonies of the Viking Age and is one of the most frequently visited sights in Norway. Yet, they are now in serious danger of collapse because the wood fibres in the artefacts are disintegrating.
he reason is the preservation method widely used a hundred years ago in Scandinavia, by which the artefacts were treated. Now, chemists and conservators of the project Saving Oseberg, which is receiving international support, are trying to save these national treasures of Norway.
By performing tests at the synchrotron radiation source BESSY II at HZB, the conservators from Oslo have examined the condition of the wood to figure out what strategies will work to preserve them in future.
“In order to halt the degradation process of the cultural treasures, we have to analyze the chemical processes the preservative has caused in the wood very precisely,” says Dr. Hartmut Kutzke who, as chemist at the Museum of Cultural History in Oslo, is leading the conservation project.
The Norwegian scientists used the infrared beamline IRIS for their studies. Employing very high resolution infrared spectroscopy, the researchers have discerned what chemical changes the material has undergone as well as the composition of the overlapping layers of lacquer that have been applied over its hundred-year history of restoration. “The method works completely non-destructively.
With the brilliant synchrotron radiation from BESSY II, we can study with pinpoint accuracy the tiniest samples hardly visible to the eye,” Dr. Ulrich Schade of Helmholtz-Zentrum Berlin describes
the advantages of the infrared method.
Alongside the near-complete Viking ship, the burial ground discovered at the Oseberg farm on the Oslofjord contained numerous works of art. This finding from the 9th century counts among the most important testimonies of the Viking Age. At the time of their excavation, some of the the objects were heavily fragmented. At the beginning of the 20th century, restorers preserved the individual pieces of wood, including four ceremonial sleds and one wagon, using a solution of alum (potassium aluminium sulfate). The alum crystallized in the wood, thereby stabilizing the wood structure. Following this treatment, the fragments were assembled using metal pins and screws and finally given a coat of
lacquer.
Over the last twenty years, the researchers have seen these valuable wooden Viking artefacts become increasingly brittle. Tests have revealed that the treated wood is exhibiting strongly acidic reactions. The alum, originally used to strengthen the wood, has led to the complete destruction of the cellulose fibres – a main structural component of the wood. “Some of the Viking treasures of Oseberg are in very bad condition. Some are only held together by the outermost layers of lacquer,”
Hartmut Kutzke explains…..
The researchers have now done infrared studies to see whether the alum has also changed the composition of another important component of the wood – its lignin. Even the metal pins and nails used to hold the wooden pieces together may have triggered catalytic processes in the valuable artefacts and caused unknown interactions with the alum and other materials used in their preservation. Initial results confirm so far that there is no cellulose left in the affected Oseberg artefacts and that the lignin has been strongly modified. At the microscale, the researchers have detected significant differences from other archaeological wood not treated with alum.
Working from these results, the conservators intend to develop new preservation materials for archaeological wood so that they can preserve the Oseberg Viking treasures once again – this time for good. “Our aim is to develop an artificial wood. This could be a type of lignin that will form a new wood structure inside,” project leader Kutzke says. These novel materials could then be employed for preserving wooden cultural treasures all around the world.
Background:
The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) operates and develops large scale facilities for research with photons (synchrotron beams) and neutrons. The experimental facilities, some of which are unique, are used annually by more than 2,500 guest researchers from universities and other research organisations worldwide. Above all, HZB is known for the unique sample environments that can be created (high magnetic fields, low temperatures). HZB conducts materials research on themes that especially benefit from and are suited to large scale facilities. Research topics include magnetic materials and functional materials. In the research focus area of solar energy, the development of thin film solar cells is a priority, whilst chemical fuels from sunlight are also a vital research theme. HZB has approx.1,100 employees of whom some 800 work on the Lise-Meitner Campus in Wannsee and
300 on the Wilhelm-Conrad-Röntgen Campus in Adlershof.
HZB is a member of the Helmholtz Association of German Research Centres, the largest scientific organisation in Germany.
Noticias relacionadas
- Anglo-Saxon treasures uncovered at Polesworth Abbey dig
- Furness Abbey grave yields treasures of a prosperous medieval abbot
- Monumental sarcófago medieval hallado en excavaciones en Montiel
- Plata dice que el patrimonio monumental es un recurso económico que "cada vez genera más empleo
- Diseñan un sistema informático como guía virtual para difundir el turismo monumental
Comenta la noticia desde Facebook
Comentarios
No hay comentarios.
Para escribir un comentario es necesario entrar (si ya es usuario registrado) o registrarse